Verifying & Validating Design

Role of Design IV&V

A well structured design is of utmost criticality when designing a system meant to orbit around the planet. Other than the obvious case of costly
repairs, a single inconsistency of software design can render a satellite or other invaluable mission centerpiece another piece of space debris. At
The NASA Independent Verification and Validation Facility, engineers and scientists work to ensure that the possibility of mission failure is mitigated
by independently analyzing the software design as it is being developed. So how does IV&V verify and validate design? Here’s how.

Verify and Validate Design

L6 Designassessment L& DetailedDesign | L& ArchitecturalDesign L& Architecture | L& Software " . .
% evaluateTransfor mat@onCorrectnessr%— — — — —| & +transformToDetailDesign:DetailedD @ +transformToArchitecture: Architecty | ¥ hardwarg:Hardware ¢ components:Component +— — — — o I n SOftwa re deSIgn’ SOftwa re req uireme nts are
:::::EZEZE:::Fgmzi:gzgggzﬁfcte%eg-: - :L‘; | | & softwardg:Software et — «?requiremen;s:Requirement f d . h . d d . I d
“\evalu_a}teFeatures:FeatureEvalgI,J:Eior,é_ R, 1 ‘ A F A [" A = : tra nstorme Into an arc IteCtu re an d etal e
e i | e %Reqj”ifew: . design for each software component. The design
[gassemoment | Lo FestureEvalustion el = | also includes databases and system interfaces
& Intent:Featurelntent ‘ i = <"/requirements:Requiremen$-7— — — > - HSEr | h d f
‘ : » L& Database L¢ Design A] A | (e.g., ar Wa re, Ope ratO r/U Se r, SO twa I"e
; ﬁr ’ _; o datsbesespasbaze | — >l : A/ - ~ : components, and subsystems). Design V&V
, i”:tf —— | Goprsor | . addresses software architectural design and
L& InterfaceAssessment +ensureTransformationCorrect: 'otoj(: : i . . .
— _ S e n il ! T T | emmemeel — | software detailed design. The objective of
SevaluateDEflgnDetanlzNullableSufﬂae QhasUndesiredFeaturgs:Boolean' g I s) | |
; T e h oo ekt — — — >l domominabagtin| | | T] . Design IV&V is to ensure that the design is a
Y I S S R P .
o | | : | e 7' _ _ _! correct, accurate, and complete transformation
: | & ! : . .
 sopeflaqlablescope | o ,J7 “ — o desgnspesi | of the software requirements that will meet the
& purview:NullablePurview ©Fr — — — — — — — — — |— R T S e — == S R ¢ interfaces:Interface | | .]]
7 | Vs oy | | W ’ | | operational need under nominal and off-nominal
Ld Sylstem L& OperatorInterface | L& Feature L& OperationalNeed Lo MisILion | L& Condition L& OperatorType k= — — — con d it i ONns an d t h at no un i nte N d ed feat ures are
&"subSyst&ms:System operatorType:OpergtorType o’?needs:Neéd . ”»
& interfaces:Interface T & conditions:ConditiorrT-)’ ' | | nt ro d uce d Ve

F ‘ Y T S T 7 o] ‘ R

Figure 1: Design Elements Domain Model - IVV 09-1 IV&V
Technical Framework, Revision N

A Static View

As mentioned in the quote above, there are many different “parts” of a design that must be examined. Figure 1 illustrates the relationships
between these key parts of the design that will be verified and validated. This static view of the design and its contributories is useful in
understanding the purpose of each piece of the design, and is essential in checking key qualities such as consistency.

Getting Dynamic

Below is an activity diagram that delineates the process of verifying and validating the design. This is a similar text-to-diagram transformation
of the process mentioned above from the “Technical Framework” document. But where the above diagram was a static representation of this
text, Figure 2 is a dynamic view. Often when verifying and validating design, these two different aspects both must be analyzed to ensure
correctness, accuracy, completeness and consistency. This dynamic form is quite useful in ensuring that the design behaves as planned (i.e.
“will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced...”) Notice that
two of the actions of Figure 2 are expanded on in two separate posters to further detail the verification and validation of design process.

5.0 Verify and Validate Design Overview
T rd » ® ®
! i] . ™ .
IV&YV of Design Against Requirements o o | IV&YV of Desion Consis]
- Transform Software Requirements into Architecture C 0 e&lgn .0 IlSlS-tE‘IlC"v
w0 . " . F 1 . N 4 1 n
“Ensure that all [in-scope) reguirements (e.g. 5RS and IRS) are represented in the appropriate elements of the design = dentiF - o
{e.g. 3DD and IDD) and that the design doss not introduce capability that is not required ™ g I :ntlyInSc?pe
y WA i 7 NI - equirements
Sowrce: WV 051, Bewsian [, enugey 28, 2001 g
completenecs o S E - Transform Software Requirements into Detailed
- Kentity requirements mapping to design elements in the model 4 F Software Component DESlgn
* Kentify requirements mapping to other requinements The Need for Design Consistency
= Add sgditional mappings where necessary F
= Rundesign/requinement coversge reports _ e
* Requirements not sddressed by cesign g
* Design thet mes ne requirements |A] Tne process of evaluating a syst=m or component to determine
whnether the products of 8 gWen cevelopment phase satisfy the
Accuracy conditions imposed st the start of that prass
= DossIVEY believe that the design represents the sttached reguinsments. R s e
= I requirements are partisilly or inaccuratedy refiected in the design, enter them in [V 3 '_E'I he pracess of prow f. i CojEEtie i GencE tnes M b
- . = p foiot | s assocabed procucts com to I [ar
= = 2 e -)) P correctness, completensss, con = cycle
the aporaprists sssessment datsbase far the project 2 Ensure Detailed Software Design is Correst, Accurate, and Complete) istency
i — sctivities ocuring each life cyde pr n, supply
Caorrectnass b= S oL devs=icoment, operstion, and maints ; satisty s nnEs,
. i e bo T “x coversms T = shatt i - i practices, and conwentions during Cyde procmsses; an
H-ef:lef\: ue_s_,n bo‘ =quiEments caversge to assess that the requirsments ars e cesstiily Compiets cnch ife cye HLtAiy E:e:'#\'e e oria
correct for the design for initisting suoceeding Iife cycle activities (e.g. builging the
software corectly)”
- FEV Bechnicol Fromewors Rewision N
- . i SOLITE: WWW RARCE fodTy ong
So-what doss IVEV check for design consistency, and whet are some
— examplas of consistent and inconsistent design festures? Methods We Use
— o Checking the consisbency of softwarz code is not 2 simpie
pes < ‘s task. It requires & thorough understanding of the developer's
= {Ensure Architecture Design is Correst, Accurate, and Complete |, requirsz tyctem functionality sz wan sr @ well-oefinez
. = method for bringing subtle design inconsistencies to the
e = bention of e anaiyst
=
. . I Sometimes o tools at sll =mre nzeded o notice an
—— = inconsistency in the design of @ prodact. &n esampde of this
o tan be seen in Figure 1 This figure consists of thnee
- 3 snapshofs of the locations of thres d¥ferent mission-critcs
softwane Components within the developer's design. Coserve
i . . _ . thast the softwere components all <ome from the
Flgures la&b: Graphical Design Reguirement Mapping Figure 2i FOD Reguirement Mapping “heritageCal” package Daved i red. Bowever this package it
retrisvad from different loostion for Uplink Component than
bt Ensure Interface Design is Correst, Accurate, and Complete | % 5 for TRiemetry anc Downink Companents. This
el | nCORSEIENCY creiEs an ambiguity about wheme the
. . . . o - Component data in “heritageCal sctunly resides, alowing for
How IVEV Validates Design against Requirements = convoluted code =nd unnecessary duplicates of model
=
he cesign must be araiyzed to snsure that it fulfills the validatzd rment:
requirements as sxpactad. — n
* Hmadto utifze the Functional I:le:criF'.il:r Documents [FOOs| ta form basis E : Azde from sirrF e pbserewbom, one wery usefl tool TVEV
of ungerstanding of the intended capability/ functiconality that the moce Figure 1= Design Structure Inconsistency uses to mccomplish its more in-depth design consitency
must satisty. mmalysis is & UML-based platform that helps with defining
* Perform sn assessment of the adhersnce to project defined standsrds, precise relatiorships ano rezponsizlites among divious
rules, and suideines far model developmant. moded sements, By ki ':".;_'I':utr\e: proviced by the UKL
* Run simulstion scenarios sgainst the model to sssess operation under Figure 2, 5 componest disgrem, shows that tae diffarent hardwars f“’ Hfarm, 'C.“_'f“'“ bipes o _“'_“5""_f n be computatianally
nominal and off nominal conditions and detect the introduction of omponenis mne providing the same softwsre interface. Flgure 3 compared with Fre arathar in eneck :I'l:r m“_':‘?:-r' wems ot
- e . - component-orovided classes, operstions, attributes snd
mbended festures: ki T Rt b N . .
ur naes eature : Uﬂ;'nu:fqi'.ﬂ':o:I:e'::f:'D::EEC:E:;':':':E;::SJI:: :;f?;z_b:zl riterfaces. This can aid in the check for consistency of the
gurs] i = Tt uk k| . N ") "
sEmENnaming convention. This inconsistency while visusly uncertying code that would he genemabed iy the UML mods
=0 pointed an =udit repart that captures snd Tl
77 o Bt = Flgure 3: Ensure Design Represents Requirements Verify Consistency Of Design h tyme ot inoonsis 5. Thssma e '--'-| :..m..,_....| R |
Itn it b Bt]
|
e
e A
Mol Tt b T T *r
|
|
s b A
' =) Ensure Design Meets
m . .
Pl Operational Need and No |, - 1 : .
i g n T ti ¥ T i n nari Figure 3! Deslgn Inconsistency
-ﬁ Unintended Features are | IRu est Scripts Create Test Scipts Based on Scenarios ‘ R [
Figure 51 Smulation Scenarios and Resalts Figure 4: Model Audits for Standard Compliance Introduced = = EEU | [R —— HASA Independent
..... A= = b= e, TS }n_-:ﬁ:_:.:u;.gd
MASA Independec: Vabidarizn Faciey
Huathar Lyt Varificaticz and ?llr?ﬂl’_:“llcl
Husthar M Lipra i ire ninsi. pos, TREC b Wakdaiom Faciliy Wapin /
Gary Marchiny Fairmzar, Wzt
Giarp S barctl e i s, TASE Ine. Virsinia

Figure 2: Process of Verifying and Validating Design

NASA Independent

Verification and
Gary Marchiny and Heather Layne Validation Facility

Gary.S.Marchiny@ivv.nasa.gov, TASC Inc. Fairmont, West
Heather.N.Layne@ivv.nasa.gov, TASC Inc Virginia

